

Tetrahedron 56 (2000) 6675-6681

The Idiosyncrasies of Tetrabenzo[24]crown-8 in the Solid State

Stuart J. Cantrill,^a Jon A. Preece,^b J. Fraser Stoddart,^{a,*} Zhen-He Wang,^a Andrew J. P. White^c and David J. Williams^c

^aDepartment of Chemistry and Biochemistry, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095, USA ^bSchool of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK ^cDepartment of Chemistry, Imperial College, South Kensington, London SW7 2AY, UK

Received 20 January 2000; accepted 6 March 2000

Abstract—In the solid state, the macrocyclic polyether, tetrabenzo[24]crown-8 (TB24C8), is an interesting molecule. When crystallized from MeCN solution, a bis-MeCN clathrate is formed, in which the TB24C8 macroring—by adopting a conformation with approximate tennis-ball-seam symmetry (D_{2d})—forms C–H··· π -linked supramolecular chains. However, when crystallized from CHCl₃/Et₂O solution, the TB24C8 crystallizes alone—adopting a self-filling 'flattened-out' conformation with C_i symmetry—forming C–H··· π -linked sheets which stack upon one another by virtue of—yet again (!)—C–H··· π hydrogen bonds. By contrast, the solid-state superstructure of the [2]pseudorotaxane formed between TB24C8 and dibenzylammonium hexafluorophosphate (DBA·PF₆), contains no C–H··· π interactions. However, a multitude of more enthalpically favorable C–H···F hydrogen bonds—to a highly-ordered matrix of PF₆⁻ anions—stabilizes the formation of the [2]pseudorotaxane array. © 2000 Elsevier Science Ltd. All rights reserved.

Introduction

The concept of hard and soft acids and bases can be extended¹ to the analysis of hydrogen bonding.² Classically, the $X-H\cdots Y$ interaction, where X and Y are heteroatoms, can be considered³ as a hard acid/hard base combination, which leads to relatively large binding enthalpies $(-\Delta H)$ in the range 3-7 kcal mol⁻¹. The structural integrities and functional aspects of living systems have been ascribed in part⁴ to those interactions. However, in recent times, weaker and more subtle hydrogen bonding forces have been identified as important stabilizing interactions in biological systems.⁵ These interactions take the form of: (i) weak acid/hard base⁶ combinations (C-H···X); as well as (ii) hard acid/weak base⁷ ones (X–H··· π). Both are associated with $-\Delta H$ values of the order of 2–4 kcal mol⁻¹. Finally, a soft acid/soft base^{1,8–11} combination (C–H··· π) has been estimated to be associated with $-\Delta H$ values of around 1 kcal mol^{-1} . There is still considerable debate as to the exact nature of these weaker hydrogen bonds,¹² e.g. are they electrostatic or dispersive in nature? Whatever interpretation is put upon them, the interactions are attractive. In particular, the C–H··· π interaction has received a great deal of attention^{1,8} recently in an attempt to establish its overall importance. Some of these investigations have been conducted for compounds in solution using ingenious approaches,^{13–15} such as the molecular torsion balance¹⁴

and chemical double mutant cycles.^{7e,15} Moreover, attempts have also been made to investigate the nature of C–H··· π interactions in the solid state^{16,17} by studying structurally related polynuclear compounds¹⁶ and designing molecular scaffolds¹⁷ which favor or disfavor edge-to-face T-type geometries. It has been found¹⁸ that, although these C–H··· π interactions are weak, they can play a significant role in the assembly of crystalline organic compounds when they operate in a cooperative manner.¹⁹ At this time, it is becoming clear that the C–H··· π interaction—perhaps the weakest and most subtle of hydrogen bonding interactions—is being recognized as a significant phenomenon in the fields of coordination chemistry,²⁰ stereochemistry,²¹ biochemistry,^{5,22} molecular recognition^{8c,23} and selfassembly.²⁴

A recent quantitative investigation²⁵ of the aromatic crown ether/dialkylammonium ion recognition motif²⁶ prompted us to explore²⁷ the effect, upon this system, of varying the number and positioning of benzo rings fused to the macrocyclic polyether skeleton. One of the compounds chosen for this study was tetrabenzo[24]crown-8 (TB24C8).²⁸ Although initially our goal was to explore this crown ether's ability to bind^{27a} $R_2NH_2^+$ ions, as we proceeded with our investigations, it became apparent that TB24C8 was an intriguing compound in its own right. Here, we report²⁹ the solid state superstructures of solvated (MeCN)³⁰ and free TB24C8. Although both superstructures exhibit cooperative C–H··· π interactions, in the latter, the superstructure is dominated totally by these interactions involving both faces of all the benzo rings in such a manner that the resulting three-dimensional superstructure is held together by an

Keywords: C-H··· π interactions; crown ethers; hydrogen bonding; pseudo-rotaxanes; supramolecular chemistry.

^{*} Corresponding authors. Tel.: +1-310-206-7078; fax: +1-310-206-1843; e-mail: stoddart@chem.ucla.edu

Figure 1. The solid-state superstructure of TB24C8·2MeCN.

array of Ar-H… π …H–CHO motifs. Additionally, we describe the solid-state superstructure³¹ of a [2]pseudorotaxane³² array-formed during co-crystallization of TB24C8 with dibenzylammonium hexafluorophosphate (DBA·PF₆)^{26b} that is stabilized by a highly ordered matrix of PF₆⁻ anions, which participate in numerous C–H…F interactions.^{33,34} In this case, it appears that the weaker C–H… π interactions are superseded by more enthalpically favorable N⁺–H…O,³ C–H…O,⁶ and C–H…F³³ hydrogen bonding interactions, which take over and dominate the solid-state superstructure.

Results and Discussion

Crystals of TB24C8·2MeCN were grown by vapor diffusion of Et₂O into an MeCN solution of TB24C8. The X-ray analysis (Fig. 1) of these crystals showed them to be an acetonitrile solvate in which the crown ether has a tennis ball seam-like conformation with approximate D_{2d} symmetry. Rings **A** and **B**, and **C** and **D** have centroid…centroid separations of 8.05 and 7.30 Å, respectively, and associated inter-ring cleft angles of 41 (**A**/**B**) and 36° (**C**/**D**). Within these clefts are inserted the two MeCN solvent molecules,

Figure 2. The C-H··· π -linked supramolecular chain formed by TB24C8·2MeCN in the solid state.

each of which are held in place by weak C-H···O hydrogen bonds between one of their methyl hydrogen atoms and a proximal catechol oxygen atom on the TB24C8 rings; the $C-H\cdots O$ hydrogen bond geometries are $C\cdots O$, $H\cdots O$ (Å), C-H···O (°), 3.35, 2.45, 153 and 3.56, 2.58, 177, respectively. There are no $\pi - \pi$ interactions involving the cyano groups. Although the presence of the included MeCN molecules inhibits intercomplex $\pi - \pi$ stacking interactions, notably there are intercomplex $C-H\cdots\pi$ interactions. In one instance, one of the polyether methylene hydrogen atoms in one molecule interacts with the π -system of ring A in another (H··· π 2.91 Å, C–H··· π 140°), and there is also an aromatic-aromatic edge-to-face interaction between ring **B** in one molecule and ring **C** in another (centroid... centroid separation 5.09 Å, with an associated C-H··· π geometry of H··· π 2.86 Å and C–H··· π 157°). Perhaps the most elegant intermolecular interactions are associated with the insertion of ring C of one molecule into the cleft formed between rings A and B of another (the $A \cdots C$ and **B**...**C** centroid...centroid separations are 5.12 and 4.99 Å, respectively) to form a supramolecular chain (Fig. 2), which is stabilized by pairs of cooperative $C-H\cdots\pi$ interactions (**a**: H··· π 3.16 Å, C-H··· π 136° and **b**: H··· π 2.93 Å, C-H··· π 142°).

Crystals of TB24C8 grown by vapor diffusion of Et₂O into a CHCl₃ solution of TB24C8 produced crystals free of included solvent. Here, the crown ether adopts a conformation (Fig. 3) that is totally different from that present in TB24C8·2MeCN, the molecule having a distinctly 'flattened-out' and self-filling conformation with crystallographic C_i symmetry in which rings **A** and **B** are inclined by 59° to each other. This dramatic change in conformation in comparison with that observed in the acetonitrile solvate-represents a departure from the conventional planar geometry³⁵ that extends from the catechol units to include the two adjacent O-methylene groups in each OCH₂CH₂O linkage in TB24C8·2MeCN to one in which there is an approximately orthogonal relationship between the planes of the catechol rings and one or both of the associated O-CH₂ bonds in each of the four OCH₂CH₂O linkages in the unsolvated TB24C8. The absence of solvent, coupled with the change in conformation, gives rise to a crystal packing that is totally dominated/controlled by cooperative C-H··· π interactions that involve all four catechol rings. These interactions fall into two distinct categories: (i) those utilizing aryl-methine hydrogen atoms meta to the catechol oxygen atoms to link (Fig. 4a) the

Figure 3. The solid-state structure of TB24C8.

Figure 4. (a) Part of one of the C-H $\cdots \pi$ (aryl-methine) linked sheets of molecules present in the solid-state superstructure of TB24C8. (b) The linking of the adjacent sheets by means of C-H $\cdots \pi$ (*O*-methylene) interactions.

molecules to form sheets; and (ii) those involving methylene hydrogen atoms to link adjacent sheets (Fig. 4b). Another key feature of this C-H··· π -linked superstructure is that all four catechol rings have H··· π approaches to both of their faces. In each instance, there is (Fig. 5) an aryl-methine proton approaching one face of a catechol ring, and an *O*-methylene proton approaching the other (C-H··· π geometries {H··· π , C-H··· π }: **a** 2.83 Å, 156°; **b** 2.84 Å, 152°; **c** 2.76 Å, 154°; **d** 2.82 Å 145°). In the case of all four catechol rings, the pairs of H··· π vectors (**a:b** 171° and **c:d** 174°) are almost co-linear. It is perhaps surprising that, for a molecule possessing four aryl ring systems, there are no face-to-face π - π interactions.³⁶

It is now of interest to compare and contrast the two solidstate superstructures described above with that of the [2]pseudorotaxane formed between TB24C8 and dibenzylammonium hexafluorophosphate (DBA·PF₆). Although TB24C8 has been shown^{27a} to have a negligible affinity

Figure 5. The systematic approaches of the aryl-methine and *O*-methylene protons to the opposite faces of all four catechol rings $(\mathbf{A}, \mathbf{A}', \mathbf{B} \text{ and } \mathbf{B}')$ in the solid-state superstructure of TB24C8.

for the DBA⁺ cation in solution, the kinetically-controlled crystallization of these two components affords³¹ a [2]pseudorotaxane array in the solid state. Single crystals of [TB24C8/DBA][PF₆] were obtained upon slow evaporation of a CHCl₃/MeCN/*n*-C₆H₁₄ (7:3:3) solution containing a 1:1 mixture of the 'rod' and 'wheel' components. The X-ray crystallographic analysis reveals that the asymmetric unit contains *four* independent 1:1 complexes, each possessing (Fig. 6) a very similar co-conformation,³⁷ with the only significant difference being in the relative orientation of one of the benzyl groups with respect to the plane of the C_{Ph}CH₂NH₂⁺CH₂C_{Ph} backbone. The approximate tennis ball

Figure 6. Ball-and-stick representations of the four crystallographically independent [2]pseudorotaxanes present in the crystals of [TB24C8/DBA][PF₆] showing the $[N^+-H\cdots O]$ and $[C-H\cdots O]$ hydrogen bonding. The hydrogen bonding geometries and inter-ring separations are given in Table 1.

Table 1. $[N^+-H\cdots O]$ and $[C-H\cdots O]$ hydrogen bonding parameters a-d and centroid…centroid separations (Å) for pairs of aromatic rings in the four independent [TB24C8/DBA][PF₆] supermolecules (Fig. 6) that exist in the solid state

Interaction (H-Bonding)	Supermolecule			
	(i)	(ii)	(iii)	(iv)
a				
$[N^+ \cdots O]$ (Å)	2.91	2.96	2.98	2.92
[H…O] (Å)	2.03	2.08	2.11	2.03
$[N^+ - H \cdots O]$ (°)	165	167	163	169
b				
$[N^+ \cdots O] (Å)$	3.05	3.04	2.99	3.00
[H···O] (Å)	2.20	2.16	2.13	2.13
$[N^+ - H \cdots O]$ (°)	158	164	159	164
c				
[C…O] (Å)	3.34	3.29	_	3.27
[H···O] (Å)	2.51	2.33	_	2.31
[C–H···O] (°)	144	175	-	178
d				
[C…O] (Å)	3.16	3.14	3.12	3.19
[H···O] (Å)	2.32	2.33	2.18	2.43
$[C-H\cdots O]$ (°)	146	141	160	136
[cat···cat]				
[A···C]	7.67	7.93	7.90	7.66
[D···E]	7.96	8.64	7.86	8.09
[cat···Ph]				
[A…B]	3.86	3.71	3.86	3.55
$[B \cdots C]$	3.96	4.23	4.22	4.12

Table 2. Hydrogen bond lengths (Å) for the interactions between the F atoms of the PF_6^- anions and the H atoms located on either the DBA⁺ cation or the TB24C8 ring in the four independent [TB24C8/DBA][PF₆] supermolecules that exist in the solid state

Interaction	Supermolecule				
	(i)	(ii)	(iii)	(iv)	
$[F \cdots H(m-Ph)]$	2.60	2.45	2.47	2.55	
$[F \cdots H(m-Ph)]$	2.55	2.60	2.55	-	
	2.55	_	_	_	
$[F \cdots H(o-cat)]$	2.56	2.34	2.52	2.43	
[F···H(polyether)]	2.55	2.45	2.47	2.35	
	2.59	2.54	2.55	2.57	
	2.49	_	2.57	2.59	
	-	-	2.55	2.58	

seam symmetry (D_{2d}) adopted by the TB24C8 macrocycle is similar to that observed in TB24C8·2MeCN. Stabilization of the individual 1:1 complexes is achieved (Table 1) via the usual^{26c} combination of $[N^+-H\cdots O]$ (**a** and **b**) and

(a'

 $[C-H\cdots O]$ (c and d) hydrogen bonding interactions, which are supplemented by face-to-face $\pi - \pi$ stacking interactions whereby benzo rings A and C of the crown ether sandwich phenyl ring **B** of the DBA⁺ cation. These supermolecules are in turn stabilized by a wealth of C-H···F hydrogen bonding³³ interactions (Table 2) originating from a highly ordered matrix formed by the associated PF₆ anions. The unusual lack of disorder observed for the PF₆ anions is perhaps indicative of their participation³⁸ in directing the formation of the overall three-dimensional lattice. The PF_6 anions are embedded (Fig. 7) into layers of the 1:1 complexes, occupying clefts (Fig. 8) formed between each group of four supermolecules. Adjacent layers-related by C_2 symmetry-are almost in register, thereby encapsulating the PF₆⁻ anions. Each anion participates in at least five [C-H···F] interactions, involving no fewer than four of its F atoms to H-bond donors located in (i) the benzo rings or (ii) the ethyleneoxy linkages of TB24C8 or (iii) the phenyl rings of the DBA⁺ cation.

Conclusions

In summary, it is noteworthy that in the solid-state superstructures of both TB24C8 and TB24C8.2MeCN, although both the O-methylene and Ar-H protons have the option (which they avoid) of forming hydrogen bonds to oxygen atoms-which represent better hydrogen bond acceptors than π -systems³⁹—and the benzo rings have the opportunity to interact in a face-to-face $\pi - \pi$ stacking manner, the three-dimensional superstructure is dominated solely by $C-H\cdots\pi$ interactions. The exclusive use of this motif could result for a number of reasons, including (i) the phenolic nature of *all* of the oxygen atoms in the TB24C8 macroring which reduces their propensity to act as effective hydrogen bond acceptors;^{27a} (ii) edge-to-face geometries that are favored over their face-to-face alternatives because the small surface area of the catechol rings enhances the electrostatic interactions in preference to dispersive ones;^{36,40} and finally (iii) the C–H··· π networks that extend throughout each solid-state superstructure and are thus associated with extensive positive cooperativity.^{18,19} Although perhaps the weakest of hydrogen bonds, the role played by $C-H\cdots\pi$ interactions in molecular recognition events is undoubtedly an important one, and is highlighted in the first two solid-state superstructures reported in this Paper. If there is a take-home message from our investigations of the idiosyncrasies of TB24C8 in the solid state, it is that the weak C-H··· π hydrogen bond should not be overlooked

Figure 7. (a) Ball-and-stick; and (b) space-filling representations (hydrogen atoms omitted for clarity) showing the layer structure of [TB24C8/DBA][PF₆].

Figure 8. A space-filling representation (hydrogen atoms omitted for clarity) of [TB24C8/DBA][PF₆] showing the embedding of the PF_6^- anions into the egg-box-like clefts formed in the layer structure of [2]pseudorotax-ane supermolecules.

when considering noncovalent bonding interactions, as it may be present more often than we think. As Nishio has commented,^{5d} a considerable portion of what in the past may have been imprecisely defined as 'hydrophobic interactions' could well be as a consequence of the C-H···π interaction. However, as demonstrated in the case of [TB24C8/DBA][PF₆], this weak noncovalent interaction can be usurped easily by other—more enthalpically favorable—interactions. This solid-state superstructure appears to be determined by a plethora of stabilizing C-H···F hydrogen bonding interactions to highly ordered, interstitially located, PF_6^- anions at the expense of an extended C-H··· π network.

Experimental

Crystal data for TB24C8·2MeCN

Crystals of TB24C8·2MeCN were grown by vapor diffusion of Et₂O into MeCN solution of TB24C8. C₃₂H₃₂O₈·2MeCN, M=626.7, monoclinic, $P2_1/c$ (no. 14), a=16.018(1), b= 10.200(2), c=21.394(2) Å, β =108.24(1)°, V=3319.7(7) Å³, Z=4, ρ_c =1.254 g cm⁻³, μ (CuK α)=7.28 cm⁻¹, F(000)= 1328, T=173 K; clear plates, 0.93×0.47×0.10 mm, Siemens P4 rotating anode diffractometer, ω -scans, 5198 independent reflections. The structure was solved by direct methods and the non-hydrogen atoms were refined anisotropically using full matrix least-squares based on F^2 to give R_1 =0.063, wR_2 =0.150 for 3570 independent observed reflections [$|F_o| > 4\sigma(|F_o|)$, $2\theta \le 124^\circ$] and 416 parameters. CCDC 132743.⁴¹

Crystal data for TB24C8

Crystals of TB24C8 were grown by vapor diffusion of Et₂O into CHCl₃ solution of TB24C8. $C_{32}H_{32}O_8$, M=544.6, monoclinic, $P2_1/c$ (no. 14), a=9.585(2), b=18.931(2), c=7.297(1) Å, $\beta=94.29(1)^\circ$, V=1320.3(3) Å³, Z=2 (the molecule has crystallographic C_i symmetry), $\rho_c=$ 1.370 g cm⁻³, μ (CuK α)=8.07 cm⁻¹, F(000)=576, T=293 K; clear plates, $0.50\times0.47\times0.13$ mm, Siemens P4/PC diffractometer, ω -scans, 2077 independent reflections. The structure was solved by direct methods and the nonhydrogen atoms were refined anisotropically using full matrix least-squares based on F^2 to give $R_1=0.049$, $wR_2=0.134$ for 1713 independent observed reflections $[|F_o|>4\sigma(|F_o|), 2\theta \le 124^\circ]$ and 182 parameters. CCDC 132744.⁴¹

Crystal data for [TB24C8/DBA][PF₆]

Crystals of [TB24C8/DBA][PF₆] were grown by slow evaporation of a CHCl₃/MeCN/n-C₆H₁₄ solution (7:3:3) containing an equimolar mixture of TB24C8 and DBA·PF₆. [C₄₆H₄₈NO₈][PF₆]·0.5MeCN·0.125CH₂Cl₂, M =919.0, triclinic, space group $P\bar{1}$ (no. 2), a=14.182(1), b=23.357(2), c=28.107(2) Å, $\alpha=91.51(1), \beta=90.51(1),$ $\gamma = 104.37(1)^\circ$, V = 9015(1) Å³, Z = 8 (there are four crystallographically independent 1:1 complexes in the asymmetric unit), $\rho_c = 1.354 \text{ g cm}^{-3}$, $\mu(\text{CuK}\alpha) = 13.7 \text{ cm}^{-1}$, F(000) =3842, T=183 K; clear platy prisms, 0.43×0.20×0.07 mm, Siemens P4 rotating anode diffractometer, graphite-monochromated CuK α radiation, ω -scans, 24143 independent reflections. The structure was solved by direct methods and all the full occupancy non-hydrogen atoms were refined anisotropically. Disorder was found in the thread component of one of the four crystallographically independent [2]pseudorotaxanes and in one of the included acetonitrile solvent molecules; in each case two partial occupancy orientations were identified with only the non-hydrogen atoms of the major occupancy orientations being refined anisotropically (the rest being refined isotropically). Refinements were by blocked full matrix least-squares based on F^2 to give $R_1 = 0.089$, $wR_2 = 0.216$ for 12765 independent observed reflections $[|F_o| > 4\sigma(|F_o|), 2\theta \le 115^\circ]$ and 2264 parameters. CCDC 132801.41

References

1. Nishio, M.; Umezawa, Y.; Hirota, M. *The CH/\pi Interaction. Evidence, Nature and Consequences*, Wiley-VCH: New York, 1998.

2. Jeffrey, G. A. An Introduction to Hydrogen Bonding, Oxford University: New York, 1997.

3. For literature on X-H···Y hydrogen bonds, see: (a) Pimentel, G. C.; McClellan, A. L. *The Hydrogen Bond*; Freeman: San Francisco, 1960. (b) Hamilton, W. C.; Ibers, J. A. *Hydrogen Bonding in Solids*; Benjamin: New York, 1968. (c) MacGillivray, L. R.; Atwood, J. L. *Nature* **1997**, *389*, 469–472. (d) Rose, K. N.; Barbour, L. J.; Orr, G. W.; Atwood, J. L. *Chem. Commun.* **1998**, 407–408. (e) Dewa, T.; Endo, K.; Aoyama, Y. *J. Am. Chem. Soc.* **1998**, *120*, 8933–8940. (f) Madsen, G. K. H.; Iversen, B. B.; Larsen, F. K.; Kapon, M.; Reisner, G. M.; Herbstein, F. H. *J. Am. Chem. Soc.* **1998**, *120*, 10040–10045.

4. (a) Watson, J. D.; Crick, F. H. C. Nature 1953, 171, 737-738.
(b) Watson, J. D. The Double Helix: A Personal Account of the Discovery of the Structure of DNA; Atheneum: New York, 1968.
(c) Jeffrey, G. A.; Saenger, W. Hydrogen Bonding in Biological Structures; Springer: Berlin, 1991. (d) Rose, G. D.; Wolfenden, R. Annu. Rev. Biophys. Biomol. 1993, 22, 381-415. (e) Draper, D. E. Trends Biochem. Sci. 1996, 21, 145-149. Although hydrogen bonding is undoubtedly a crucial factor in terms of both DNA structure and function, the relative importance of specific Watson-Crick hydrogen bonding interactions has recently been called into question. See: (f) Moran, S.; Ren, R. X.-F.; Rumney IV, S.; Kool, E. T. J. Am. Chem. Soc. 1997, 119, 2056-2057.
(g) Evans, T. A.; Seddon, K. R. Chem. Commun. 1997, 2023-

2024. (h) Morales, J. C.; Kool, E. T. J. Am. Chem. Soc. **1999**, *121*, 2323–2324.

5. (a) Chakrabarti, P.; Samanta, U. J. Mol. Biol. 1995, 251, 9–14.
(b) Maeda, I.; Shimohigashi, Y.; Ikesue, K.; Nose, T.; Ide, Y.; Kawano, K.; Ohno, M. J. Biochem. 1996, 119, 870–877.
(c) Umezawa, Y.; Nishio, M. Bioorg. Med. Chem. 1998, 6, 493–504.
(d) Umezawa, Y.; Nishio, M. Bioorg. Med. Chem. 1998, 6, 2507–2515.
(e) Glusker, J. P. Top. Curr. Chem. 1998, 198, 1–56.
(f) Umezawa, Y.; Tsuboyama, S.; Takahashi, H.; Uzawa, J.; Nishio, M. Bioorg. Med. Chem. 1999, 7, 2021–2026.

6. For literature on C-H···X hydrogen bonds, see: (a) Taylor, R.; Kennard, O. J. Am. Chem. Soc. 1982, 104, 5063-5070. (b) Desiraju, G. R. Acc. Chem. Res. 1991, 24, 290-296. (c) Desiraju, G. R. Acc. Chem. Res. 1996, 29, 441-449. (d) Steiner, T. Chem. Commun. 1997, 727-734. (e) Berger, I.; Egli, M. Chem. Eur. J. 1997, 3, 1400-1404. (f) Mascal, M. Chem. Commun. 1998, 303-304. (g) Jeffrey, G. A. J. Mol. Struct. 1999, 486, 293-298.

7. For literature on X–H··· π hydrogen bonds, see: (a) Biali, S. E.; Rappoport, Z. J. Am. Chem. Soc. 1984, 106, 5641-5653. (b) Drew, M. G. B.; Willey, G. R. J. Chem. Soc., Perkin Trans. 2 1986, 215-220. (c) Rzepa, H. S.; Webb, M. L.; Slawin, A. M. Z.; Williams, D. J. J. Chem. Soc., Chem. Commun. 1991, 765-768. (d) Rodham, D. A.; Suzuki, S.; Suenram, R. D.; Lovas, F. J.; Dasgupta, D.; Blake, G. A. Nature 1993, 362, 735-737. (e) Adams, H.; Harris, K. D. M.; Hembury, G. A.; Hunter, C. A.; Livingston, D.; McCabe, J. M. Chem. Commun. 1996, 2351-2352. (f) Bisson, A. P.; Lynch, V. M.; Monahan, M. K. C.; Anslyn, E. V. Angew. Chem., Int. Ed. Engl. 1997, 36, 2340-2342. (g) Malone, J. F.; Murray, C. M.; Charlton, M. H.; Docherty, R.; Lavery, A. J. J. Chem. Soc., Faraday Trans. 1997, 93, 3429-3436. (h) Rozas, I.; Alkorta, I.; Elguero, J. J. Phys. Chem. A 1997, 101, 9457-9463. (i) Braga, D.; Grepioni, F.; Tedesco, E. Organometallics 1998, 17, 2669-2672. 8. For a general consideration of the C-H $\cdots\pi$ interaction, see: (a) Nishio, M.; Hirota, M. Tetrahedron 1989, 45, 7201-7245. (b) Hunter, C. A. Chem. Soc. Rev. 1994, 101-109. (c) Nishio, M.; Umezawa, Y.; Hirota, M.; Takeuchi, Y. Tetrahedron 1995, 51, 8665-8701. (d) Laxmi Madhavi, N. N.; Katz, A. K.; Carrell, H. L.; Nangia, A.; Desiraju, G. R. Chem. Commun. 1997, 1953-1954. (e) Desiraju, G. R.; Steiner, T. The Weak Hydrogen Bond in Structural Chemistry and Biology; Oxford University: Oxford, 1999. (f) Umezawa, Y.; Tsuboyama, S.; Takahashi, H.; Uzawa, J.; Nishio, M. Tetrahedron 1999, 55, 10047-10056. Additionally, for a comprehensive list of references on almost every aspect of the $C-H\cdots\pi$ interaction, consult the homepage of Professor Motohiro Nishio on the Internet at http://www.tim.hi-ho.ne.jp.dionisio.

9. For literature on C-H··· π (aryl) hydrogen bonds, see: (a) Desiraju, G. R.; Gavezzotti, A. *J. Chem. Soc., Chem. Commun.* **1989**, 621–623. (b) Oki, M. *Acc. Chem. Res.* **1990**, *23*, 351–356. (c) Etter, M. C. *J. Phys. Chem.* **1991**, *95*, 4601–4610. (d) Zaworotko, M. J. *Chem. Soc. Rev.* **1994**, *23*, 283–288. (e) Ashton, P. R.; Preece, J. A.; Stoddart, J. F.; Tolley, M. S.; White, A. J. P.; Williams, D. J. *Synthesis* **1994**, 1344–1352. (f) Boyd, D. R.; Evans, T. A.; Jennings, W. B.; Malone, J. F.; O'Sullivan, W.; Smith, A. *Chem. Commun.* **1996**, 2269–2270. (g) Ashton, P. R.; Hörner, B.; Kocian, O.; Menzer, S.; White, A. J. P.; Stoddart, J. F.; Williams, D. J. *Synthesis* **1996**, 930–940.

10. For literature on C-H··· π (alkynyl) hydrogen bonds, see: (a) Steiner, T. *Chem. Commun.* **1995**, 95–96. (b) Steiner, T.; Starikov, E. B.; Amado, A. M.; Teixeira-Dias, J. J. C. *J. Chem. Soc., Perkin Trans.* 2 **1995**, 1321–1326. (c) Steiner, T.; Tamm, M.; Grzegorzewski, A.; Schulte, N.; Veldman, N.; Schreurs, A. M. M.; Kanters, J. A.; Kroon, J.; van der Maas, J.; Lutz, B. *J. Chem. Soc., Perkin Trans.* 2 **1996**, 2441–2446. (d) Robinson, J. M. A.; Kariuki, B. M.; Gough, R. J.; Harris, K. D. M.; Philp, D. J. Solid State Chem. 1997, 134, 203–206. (e) Weiss, H.-C.; Bläser, D.; Boese, R.; Doughan, B. M.; Haley, M. M. Chem. Commun. 1997, 1703– 1704. (f) Philp, D.; Robinson, J. M. A. J. Chem. Soc., Perkin Trans. 2 1998, 1643–1650. (g) Robinson, J. M. A.; Kariuki, B. M.; Harris, K. D. M.; Philp, D. J. Chem. Soc., Perkin Trans. 2 1998, 2459– 2469.

11. For a report of a C-H \cdots π (alkenyl) hydrogen bond, see: Müller, T. E.; Mingos, D. M. P.; Williams, D. J.J. Chem. Soc., Chem. Commun. **1994**, 1787–1788.

12. (a) Steiner, T.; Desiraju, G. R. Chem. Commun. **1998**, 891–892. (b) Harder, S. Chem. Eur. J. **1999**, 5, 1852–1861.

13. Ehama, R.; Tsushima, M.; Yuzuri, T.; Suezawa, H.; Sakakibara, K.; Hirota, M. *Bull. Chem. Soc. Jpn* **1993**, *66*, 814–818.

14. (a) Paliwal, S.; Gieb, S.; Wilcox, C. S. J. Am. Chem. Soc. 1994, 116, 4497–4498. (b) Kim, E.; Paliwal, S.; Wilcox, C. S. J. Am. Chem. Soc. 1998, 120, 11192–11193. (c) Nakamura, K.; Houk, K. N. Org. Lett. 1999, 13, 2049–2051.

15. (a) Bisson, A. P.; Carver, F. J.; Hunter, C. A.; Waltho, J. P. J. Am. Chem. Soc. **1994**, 116, 10292–10293. (b) Adams, H.; Carver, F. J.; Hunter, C. A.; Morales, J. C.; Seward, E. M. Angew. Chem., Int. Ed. Engl. **1996**, 35, 1542–1544. (c) Carver, F. J.; Hunter, C. A.; Seward, E. M. Chem. Commun. **1998**, 775–776.

16. Desiraju, G. R.; Gavezzotti, A. Acta Crystallogr. 1989, B45, 473–482.

17. L'Esprance, R. P.; Engem, D. V.; Dayal, D.; Pascal, R. A. J. Org. Chem. **1991**, *56*, 688–694.

18. Umezawa, Y.; Tsuboyama, S.; Honda, K.; Uzawa, J.; Nishio, M. Bull. Chem. Soc. Jpn **1998**, 71, 1207–1213.

19. In a positively cooperative process, the small but favorable equilibrium of nucleation is overcome by the numerous favorable associations of the subsequent growth. Thus, additional interactions become a thermodynamically favored process wherein they are distinct from isodemic processes in which they have the same probability of forming as previous and subsequent interactions. For a full discussion, see: Lindsey, J. S. *New J. Chem.* **1991**, *15*, 153–180.

 (a) Karpishin, T. B.; Stack, T. D. P.; Raymond, K. N. J. Am. Chem. Soc. 1993, 115, 6115–6125. (b) Yamanari, K.; Nozaki, T.; Fuyuhiro, A.; Kushi, Y.; Kaizaki, S. J. Chem. Soc., Dalton Trans. 1996, 2851–2856. (c) Mizutani, M.; Tomosue, S.; Kinoshita, H.; Jitsukawa, K.; Masuda, H.; Einaga, H. Bull. Chem. Soc. Jpn 1999, 72, 981–988.

(a) Araki, S.; Sakakibara, K.; Hirota, M.; Nishio, M.; Tsuzuki, S.; Tanabe, K. *Tetrahedron Lett.* **1991**, *32*, 6587–6590. (b) Araki, S.; Seki, T.; Sakakibara, K.; Hirota, M.; Kodama, Y.; Nishio, M. *Tetrahedron: Asymmetry* **1992**, *4*, 555–574. (c) Quan, R. W.; Li, Z.; Jacobsen, E. N. J. Am. Chem. Soc. **1996**, *118*, 8156–8157.
 (a) Matouschek, A.; Kellis, J. T.; Serrano, L.; Fersht, A. R. Nature **1989**, *340*, 122–126. (b) Burley, S. K.; Petsko, G. A. *Trends Biotechnol.* **1989**, *7*, 354–359. (c) Serrano, L.; Bycroft, M.; Fersht, A. R. J. Mol. Biol. **1991**, *218*, 465–475. (d) Kennan, A. J.; Whitlock, H. W. J. Am. Chem. Soc. **1996**, *118*, 3027–3028. (e) Jitsukawa, K.; Iwai, K.; Masuda, H.; Ogoshi, H.; Einaga, H. J. Chem. Soc., Dalton Trans. **1997**, 3691–3698. (f) Wedemayer, G. J.; Patten, P. A.; Wang, L. H.; Schultz, P. G.; Stevens, R. C. Science **1997**, *276*, 1665–1669. (g) Shimohigashi, Y.; Nose, T.; Yamauchi, Y.; Maeda, I. Biopolymers **1999**, *51*, 9–17.

23. (a) Cochran, J. E.; Parrott, T. J.; Whitlock, B. J.; Whitlock, H. W. J. Am. Chem. Soc. **1992**, 114, 2269–2270. (b) Kobayashi, K.; Asakawa, Y.; Kikuchi, Y.; Toi, H.; Aoyama, Y. J. Am. Chem.

Soc. 1993, 115, 2648–2654. (c) Yanagihara, R.; Aoyama, Y. Tetrahedron Lett. 1994, 35, 9725–9728. (d) Vincenti, M.; Dalcanale, E. J. Chem. Soc., Perkin Trans 2 1995, 1069–1076.
(e) Schladetzky, K. D.; Haque, T. S.; Gellman, S. H. J. Org. Chem. 1995, 60, 4108–4113. (f) Kikuchi, Y.; Aoyama, Y. Bull. Chem. Soc. Jpn 1996, 69, 217–220. (g) Timmerman, P.; Verboom, W.; Reinhoudt, D. N. Tetrahedron 1996, 52, 2663–2704. (h) Davis, A. P.; Wareham, R. S. Angew. Chem., Int. Ed. Engl. 1998, 37, 2270–2273. (i) Cloninger, M. J.; Whitlock, H. W. J. Org. Chem. 1998, 63, 6153–6159. (j) Kusukawa, T.; Fujita, M. J. Am. Chem. Soc. 1999, 121, 1397–1398.

24. (a) Claessens, C. G.; Stoddart, J. F. J. Phys. Org. Chem. 1997, 10, 254–272. (b) Lindeman, S. V.; Kosynkin, D.; Kochi, J. K. J. Am. Chem. Soc. 1998, 120, 13268–13269. (c) Hancock, K. S. B.; Steed, J. W. Chem. Commun. 1998, 1409–1410. (d) Hadjikakou, S. K.; Demertzis, M. A.; Miller, J. R.; Kovala-Demertzi, D. J. Chem. Soc., Dalton Trans. 1999, 663–666.

25. Ashton, P. R.; Fyfe, M. C. T.; Hickingbottom, S. K.; Stoddart, J. F.; White, A. J. P.; Williams, D. J. *J. Chem. Soc., Perkin Trans.* 2 **1998**, 2117–2128.

26. (a) Kolchinski, A. G.; Busch, D. H.; Alcock, N. W. J. Chem. Soc., Chem. Commun. 1995, 1289–1291. (b) Ashton, P. R.; Campbell, P. J.; Chrystal, E. J. T.; Glink, P. T.; Menzer, S.; Philp, D.; Spencer, N.; Stoddart, J. F.; Tasker, P. A.; Williams, D. J. Angew. Chem., Int. Ed. Engl. 1995, 34, 1865–1869.
(c) Ashton, P. R.; Chrystal, E. J. T.; Glink, P. T.; Menzer, S.; Schiavo, C.; Spencer, N.; Stoddart, J. F.; Tasker, P. A.; White, A. J. P.; Williams, D. J. Chem. Eur. J. 1996, 2, 709–728.
(d) Fyfe, M. C. T.; Stoddart, J. F. Adv. Supramol. Chem. 1999, 5, 1–53.

27. (a) Ashton, P. R.; Bartsch, R. A.; Cantrill, S. J.; Hanes, Jr., R. E.; Hickingbottom, S. K.; Lowe, J. N.; Preece, J. A.; Stoddart, J. F.; Talanov, V. S.; Wang, Z.-H. *Tetrahedron Lett.* **1999**, *40*, 3661–3664. (b) Cantrill, S. J.; Fyfe, M. C. T.; Heiss, A. M.; Stoddart, J. F.; White, A. J. P.; Williams, D. J. *Org. Lett.* **2000**, *2*, 61–64.

28. For the synthesis of TB24C8, see: Brown, G.R.; Foubister, A. J. *J. Med. Chem.* **1983**, *26*, 590–592.

29. After our own X-ray crystallographic investigations had been completed, reports of the solid-state structures of TB24C8 (see: Bryan, J. C.; Bunick, G. J.; Sachleben, R. A. Acta Crystallogr. 1999, C55, 250-252) and TB24C8·2MeCN (see: Bryan, J. C.; Sachleben, R. A.; Hay, B. P. Inorg. Chim. Acta 1999, 290, 86-94) appeared in the literature. In the case of the free TB24C8 structure, the authors comment that: 'Despite the large number of arene rings in this compound, no π stacking is observed. However, close $C-H\cdots\pi$ contacts, some of which may represent hydrogen bonds are clearly present. These weak hydrogen bonds may also play a role in determining the observed crown conformation.' We wish to present our analyses of these two solid-state superstructures in the context of these extensive $C-H\cdots\pi$ networks that permeate throughout the crystalline lattices, highlighting, in particular, the dominant role that these weak intermolecular forces play in engineering the overall three-dimensional superstructures. 30. For other solid-state examples of crown ether/acetonitrile complexes. see: (a) Allwood, B. L.; Fuller, S. E.; Ning, P. C. Y. K.; Slawin, A. M. Z.; Stoddart, J. F.; Williams, D. J. J. Chem. Soc., Chem. Commun. 1984, 1356-1360. (b) Rogers, R. D.; Richards, P. D.; Voss, E. J. J. Incl. Phenom. 1988, 6, 65-71. (c) Garrell, R. L.; Smyth, J. C.; Fronczek, F. R.; Gandour, R. D. *J. Incl. Phenom.* **1988**, *6*, 73–78. (d) Rogers, R. D. *J. Incl. Phenom.* **1988**, *6*, 629–645. (e) Thuéry, P.; Nierlich, M.; Bryan, J. C.; Lamare, V.; Dozol, J.-F.; Asfari, Z.; Vicens, J. *J. Chem. Soc., Dalton Trans.* **1997**, 4191–4202.

31. Ashton, P. R.; Cantrill, S. J.; Preece, J. A.; Stoddart, J. F.; Wang, Z. -H.; White, A. J. P.; Williams, D. *J. Org. Lett.* **1999**, *1*, 1917–1920.

32. A [2.]pseudorotaxane is a binary complex in which a linear rod-like component is threaded through the cavity of a wheel-shaped component. See: Ashton, P. R.; Philp, D.; Spencer, N.; Stoddart, J. F. J. Chem. Soc., Chem. Commun. 1991, 1677–1679.
33. For reports of C-H···F hydrogen bonding interactions, see: (a) Teff, D. J.; Huffman, J. C.; Caulton, K. G. Inorg. Chem. 1997, 36, 4372–4380. (b) Thalladi, V. R.; Weiss, H.-C.; Bläser, D.; Boese, R.; Nangia, A.; Desiraju, G. R. J. Am. Chem. Soc. 1998, 120, 8702–8710. (c) Steiner, T. Acta Crystallogr. 1998, B54, 456–463. (d) Grepioni, F.; Cojazzi, G.; Draper, S. M.; Scully, N.; Braga, D. Organometallics 1998, 17, 296–307. (e) Dai, C.; Nguyen, P.; Marder, T. B.; Scott, A. J.; Clegg, W.; Viney, C. Chem. Commun. 1999, 2493–2494. (f) Renak, M. L.; Bartholomew, G. P.; Wang, S.; Ricatto, P. J.; Lachicotte, R. J.; Bazan, G. C. J. Am. Chem. Soc. 1999, 121, 7787–7799.

34. It is perhaps worthy of note that an example of a $C-F\cdots\pi$ interaction has been reported recently. See: Hayashi, N.; Mori, T.; Matsumoto, K. *Chem. Commun.* **1998**, 1905–1906.

35. Makriyannis, A.; Fesik, S. J. Am. Chem. Soc. 1982, 104, 6462–6463.

36. Hunter, C. A.; Sanders, J. K. M. J. Am. Chem. Soc. 1990, 112, 5525–5534.

37. Whereas the term 'conformation' refers to the spatial arrangement of atoms in a single molecule—resulting from torsions about single or partial double bonds—the term 'co-conformation' describes the relative three-dimensional dispositions of: (a) the constituent parts (e.g. host and guest) in supramolecular systems; and of (b) the components of interlocked molecular compounds, such as catenanes and rotaxanes. See: Fyfe, M. C. T.; Glink, P. T.; Menzer, S.; Stoddart, J. F.; White, A. J. P.; Williams, D. J. Angew. Chem., Int. Ed. Engl. **1997**, *36*, 2068–2070.

38. In the realm of crown ether/dialkylammonium ion binding, we have observed previously the PF₆⁻ anion-assisted formation—in the solid state—of *discrete supermolecules* with pseudorotaxane geometries, which are also stabilized by complementary C-H…F hydrogen bonding interactions. See: (a) Ashton, P. R.; Fyfe, M. C. T.; Glink, P. T.; Menzer, S.; Stoddart, J. F.; White, A. J. P.; Williams, D. J. *J. Am. Chem. Soc.* **1997**, *119*, 12514–12524. (b) Ashton, P. R.; Fyfe, M. C. T.; Hickingbottom, S. K.; Menzer, S.; Stoddart, J. F.; White, A. J. P.; Williams, D. J. *Chem. Eur. J.* **1998**, *4*, 577–589. (c) Ashton, P. R.; Fyfe, M. C. T.; Martínez-Díaz, M.-V.; Menzer, S.; Schiavo, C.; Stoddart, J. F.; White, A. J. P.; Williams, D. J. *Chem. Eur. J.* **1998**, *4*, 1523–1534. (d) Fyfe, M. C. T.; Stoddart, J. F.; Williams, D. *J. Struct. Chem.* **1999**, *10*, 243–259.

39. Etter, M. C. Acc. Chem. Res. 1990, 23, 120-131.

40. Jorgensen, W. L.; Severance, D. L. J. Am. Chem. Soc. 1990, 112, 4768–4774.

41. Copies of the crystallographic data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB12 1EZ, UK (Fax: (+44) 1223-336033; e-mail: teched@ccdc. cam.ac.uk).